
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

Panel:
Whole System Virtualization in HEC Systems

Ron Brightwell
Scalable Computing Systems
Sandia National Laboratories

Albuquerque, New Mexico, USA

HPDC
July 26, 2005



Sandia Systems

Paragon
• 10s of users
• 1st periods 

processing MPP
• World record 

performance
• SUNMOS
• Routine 3D 

simulations

ASCI Red
• Production MPP
• 100s of users
• Red & Black 

partitions
• Improved 

interconnect
• high-fidelity coupled 

3d physics

Cplant
• Commodity based 

supercomputer
• ~100’s of users
• Linux-based OS 

licensed for 
commercialization

• Enhanced simulation 
capacity

Red Storm
• ASCI’s next flagship
• 41 Tflops
• Custom interconnect
• Purpose built RAS
• Highly balanced and 

scalable

nCUBE2
• Sandia’s first large 

MPP
• Achieved Gflop 

performance on 
applications

1990

1993

1997

1999

2004



Sandia’s 60 TF Thunderbird Machine

• Compute nodes
– 4096 Dell Servers
– Dual 3.6 GHz EM64T
– 6 GB RAM

• Network
– InfiniBand (Cisco (Topspin))
– 50% Blocking Ratio
– 8 TS-740s
– 256 TS-120s

• Node count
– Largest PC cluster in the 

world
– Third largest Supercomputer 

in the world

8x SFS TS740
288 ports each

Edge

Core
Fabric

256x TS120
24-ports each

Compute 
Nodes

Compute 
Nodes

8192 Processors

2048 uplinks
(7m/10m/15m/20m)



Characteristics of High-End Systems

• Applications are resource constrained – scaled to 
consume all of at least one resource
– CPU, memory, memory bandwidth, network 

bandwidth, etc.
– Applications manage the resources

• Machines are space-shared
– Simple way to try to maximize resources

• Small set of devices
– Compute nodes typically only have processors, 

memory, and network interfaces
• N = 1 (well, almost)



Sandia Lightweight Kernels (LWKs)

• Target high-performance scientific and 
engineering applications on tightly-coupled 
distributed-memory architectures

• Scalable to tens of thousands of processors
• Fast networking and execution
• Small memory footprint
• Persistent kernel



Approach

• Separate policy decision from policy enforcement
• Move resource management as close to 

application as possible
• Protect applications from each other
• Let user processes manage resources
• Get out of the way



LWK General Structure

QK

App. 1

libmpi.a

libc.a

PCT App. 3

libvertex.a

libc.a

App. 2

libnx.a

libc.a



Typical Usage

QK

App. 1

libmpi.a

libc.a

PCT



Quintessential Kernel (QK)

• Policy enforcer
• Initializes hardware
• Handles interrupts and exceptions
• Maintains hardware virtual addressing
• No virtual memory support
• Static size
• Small size
• Non-blocking
• Few, well defined entry points



Process Control Thread (PCT)

• Runs in user space
• More privileged than user applications
• Policy maker

– Process loading 
– Process scheduling
– Virtual address space management
– Name server
– Fault handling



PCT (cont’d)

• Customizable
– Singletasking or multitasking
– Round robin or priority scheduling
– High performance, debugging, or profiling version

• Changes behavior of OS without changing the 
kernel



Qk is Really a HAL

Hardware Abstraction Layer

ApplicationOS



Current OS/Runtime Issues

• “OS Noise” or “Rogue OS effects”
– LANL ASCI Q analysis
– LLNL daemon scheduling
– Upcoming workshop on OS interference

• Consistent page mappings for network devices
• Understanding and isolating the impact of the OS
• How much memory is there?
• The implementation and development of 

operating systems is an impediment to new 
architectures and programming models



Where Don’t We Need Virtualization

• Processor
– Can’t leverage processor-specific features

• i860 bus locking
• Memory

– Linux already makes everything look like an x86
– We already have enough problems with tracking memory 

usage
– Applications always know better how to do resource 

allocation
• Network

– No good way to provide isolation with network 
virtualization



Why We Might Need Virtualization

• OS development
– Use VMM as hardware abstraction layer

• No need to port to every new machine
– Debugging

• Easily capture entire state
– Testbeds

• OS comparison
– HAL makes direct OS performance comparison a little 

easier
• Porting the OS isn’t the issue – it was the network

• Checkpoint/Restart/Migration
– For those who want this in the first place



All problems in computer science can be 
solved by another level of indirection.

-Butler Lampson

…except for performance.
-Me


